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J. Phys. A: Math. Gen. 14 (1981) 2881-2895. Printed in Great Britain 

The equality of multiple integrals in the series development 
of a reflection coefficient for waves governed by a general 
linear differential equation 

J Heading 
Department of Applied Mathematics, The University College of Wales, Penglais, 
Aberystwyth, Dyfed, S Y 2 3  3BZ, UK 

Received 6 February 1981 

Abstract. When wave propagation is governed by a second-order linear differential 
equation in normal form, the reflection coefficient, when expressed as a power series in 
terms of a parameter 0 ,  consists of a large number of multiple integrals, most of which have 
been proved to be equal in pairs. The present paper generalises this result to apply to 
equations of order 2n,  the various stages of the generalisation not being obvious from the 
case when n = 1. The equal pairs of multiple integrals are now only possible for modified 
integrands, but not for the complete integrands, the number of these pairs of multiple 
integrals being then independent of the order 2n.  

1. Motivation and introduction 

In Darwin’s (1924) and Hartree’s (1929) investigations into the propagation of elec- 
tromagnetic waves, each element of the medium was regarded as transmitting fresh 
waves in all directions, the linear sum of all these wavelets at a point forming the overall 
wave propagated through the medium. Each newly transmitted wavelet was taken as 
propagating in free space, regardless of the presence of the medium. White (1942) used 
these ideas, while Heading (1953, 1963) extended these concepts considerably so as to 
obtain many formulae relating to propagation in plane-stratified isotropic and aniso- 
tropic media. Computer calculations by Westcott (1962a, b, c, d, 1964) based on these 
formulae gave an insight into the qualitative and quantitative aspects of reflection 
processes existing in isotropic and anisotropic media. 

In these formulae, a reflection coefficient R is expressed as an integral, whose 
integrand involves the field in the medium together with a function of position that 
shows by how much the medium differs from free space, this difference being specified 
by a parameter a. When R is expanded as a power series in a, the coefficients consist of 
the sum of “any multiple integrals, their order being equal to the respective power of a ; 
see Heading (1953, 1963, 1975). When the medium is isotropic, the author later 
noticed that the two double integrals involved in the coefficient of a’ are equal, 
although completely different in explicit form. This led to a detailed investigation by the 
author (Heading 1981) of the more general case when the field is governed by a general 
second-order linear differential equation (not necessarily in normal form), the pro- 
pagation of the newly reradiated waves being governed by an independent second- 
order linear equation. A parameter a is introduced to describe the difference between 
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the two equations. An examination of the coefficient of cy " in the series development of 
R (this coefficient consisting of a large number of multiple integrals each of order n )  
showed that a large number of equal pairs existed amongst these multiple integrals. 
Formulae were derived giving the number of such pairs, and how they could be 
recognised both analytically and diagrammatically. 

The present paper extends these ideas to linear differential equations of order 2n, 
since many physical phenomena are described by equations of order greater than two. 
The advantages of such a generalisation to order 2n have been exploited by the author 
in other publications; a list is given in Heading (1978, p 281),  these investigations 
throwing up deeper properties than those contained in the simple case n = 1. Two 
equations of order 2n are specified, the first to govern the propagation of the field under 
investigation, and the second to govern the propagation of the newly transmitted 
wavelets (the physical terminology behind the case n = 1 is imported to describe the 
general case). Some questions to be answered are: What features of the elementary 
case are susceptible to generalisation? What is the nature of the generalisation? Are 
there features of the elementary case that remain for general n, being independent of 
the order of the differential equation? 

The basic ideas behind the simple case n = 1 are used in this generalisation, but at 
each stage these basic ideas provide no certain guidance as to the mode of procedure; in 
fact, for progress to be made, considerable ingenuity is needed throughout the 
investigation, as can be seen by a careful comparison between the analysis of the present 
paper and that given in Heading (1981) relating to the elementary case. 

2. The differential equations under consideration 

The 'carried' wave W is governed by the linear differential operator of even order 2n 
defined by 

gP =D2" +p2,-l(z)D2"-' +. . . +pl ( z )D  + p o ( z ) ,  (1) 
where D = d/dz. W satisfies the equation W = 0. The functions p , ( z )  possess no 
singularities on the portion of the real t axis under consideration. The adjoint operator 
is 

p 2 n - 1 + .  * . -DP1 + P o ;  9 k A )  =D2n - - ~ 2 n - l  

these operators are such that if U and U are any two suitable functions of 2, then the 
Lagrange identity (see Ince 1926) 

vgpu  - u9;A'U = OIPp ( U ,  U)] ( 2 )  
is satisfied, where PP(u,  U )  denotes the bilinear concomitant 

Pp(U, U ) = D 2 n - 1 U  ' U +D2n-2U * ( - D U + p 2 n - 1 U )  

+D2n-3U [D2U -D(pzn - lU)+pzn . -2U]+.  . . 
+ U [ - 0 2 " - ' U  + D 2 n - 2 ( p 2 n - l U )  -D2n-3 ( P 2 n - 2 0 ) +  * * +PIU]. (3) 

If a discontinuity exists at a point zo in any p l ( z )  or its derivatives, we impose the 
boundary conditions that W, OW, . . . , D2"-'W are all continuous at z = zo. 

'Free space' is defined as a particular range of real z in which the coefficients p , ( z )  
are all constants (the same constants in all such ranges that may exist). If the 2n 
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solutions of the polynomial equation 

h 2 " + p 2 n - ~ h 2 n - 1 + ,  . . + P I A  + p o = O  

are the distinct values ar,  then the 'free space' wave has the form 
2 n  

W = 1 A, ea,'. 
r = l  

(4) 

Consider a second operator Bq of order 2n, defined by the coefficients q l ( z ) ,  with 
9:̂' as its adjoint. The 'carrier' wave w will be governed by the differential equation 
usingthis adjoint operator, namely 9iA'w = 0. We shall define GBq to be such that in free 
space qr = pe  for all coefficients. Hence in free space 

9iA'W = (D2" -p2,-1D2"-l  + * . * -p1D +po)w = 0 

has the solution 
2 n  

r = l  
w = 1 Br e-"". 

Define the operator 9 of order 2n - 1 to be 

9 = g p - g q  

= O  in a free space region. 

In fact, we shall write 

p r ( z )  - qr(2 1 .yr(z), 
where a may be a small parameter; to indicate this, write 9 = a9,. 

Consider the Lagrange identity (2) for the two solutions W(z) and w(z): 
W5BpW- w 9 p w  =D[Pp(W, w)], 

w g p w -  w a 9 p w  - W9kA'W =D[Pp(W, w)]. 
or 

Since B3,W and 9:A'w vanish, we obtain upon integration 

Pp(  W, w)l: = -a 1' W9LA'w dt, (6 )  
R 

where 9bA'w is of order 2n - 1. 
When integrated throughout any free space region, we conclude that P p (  W, w )  = 

constant, since 9y = 0. 
The left-hand side of (6) contains the 2n terms W, OW, . . , , DZn-' W, but the 

integrand contains W only, together with w, D w ,  . . . , D2"-l w. The result is a complete 
generalisation of the case when n = 1, given by equation (3) in the paper by Heading 
(1981).  But there is an important difference, for in the integrand only w occurs and not 
D w .  It is this difference that brings about the distinct results for the generalised theory 
being developed in this paper. When n = 1 ,  the two second-order equations were in 
effect reduced to normal form by means of an integrating factor J ,  and this specialised 
treatment ensured (i) that no D w  appeared in the integrand, and (ii) that no reference 
occurred to adjoint operators, since in normal form the operators are self-adjoint. 
These specialised features are absent when n > 1, 
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3. Evaluation of the bilinear concomitant in free space 

We now evaluate Pp( W, w )  at a point z = a  in free space; matrix notation is an 
advantage here. Let the column matrix U be defined by 

U 

U = [  Tu 

DZn-'u 

and similarly for any other column matrix. Then from (3), 

/-D2"-'V + D 2 n - 2 ( p 2 n - l ~ )  -. . . + P I U \  

\ I  0 0 * . .  0 o /  
in free space. Now 

hence Pp( W, w )  equals 

1 
(AI  ea1'A2 ea*'. . .) 11 y 2  

where the various minus signs have been taken into account. Generally, consider the 
product 

p1 p2  * * 

(1 a a 2 . . . )  1; ;: : : :  y i ]  . . . ,  
. . .  . .  

for any two roots a and P.  The product equals 

1 ( p 1 + P 2 P + p 3 P 2 + .  * - ) + a ( P 2 + P 3 P + P 4 P 2 + .  . * ) + a 2 ( p 3 + p 4 P + p 5 P 2 + *  e ) + *  * 

= p l + p ; ? ( a + P ) + p 3 ( a 2 + a P + P 2 ) + .  I .  

= ( a  - p ) - ' [ p 1 ( a  - P ) + p * ( a 2 - p 2 ) + p 3 ( a 3 - P 3 ) + .  . .I 
= ( a  -p)-'(-po+po)=O provided a # P, 
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but when CY = p, the product equals 

p1+ 2p2a + 3 p 3 a 2 + .  . . =dS/daImE S’(a j 

say, where 

s = a n  + p 2 n - l a 2 n - 1 + .  . .+p1CY + P O .  

Hence in free space 

In another free space region containing the point z = b > a (with the same roots a r ) ,  
let 

2 n  2n 
w = C A, earz, w = 1 8, 

Then result (6), with z replaced by b, becomes 

r = l  r = l  

lab W9LA)w dt. 
2 n  - - 

(ArBr -ArBrjS’(arj = -a 
r = l  

(7) 

This is a relation between the coefficients in one free space region and those in 
another, expressed in terms of an integral throughout the intervening space of the 
carried and carrier waves (and the derivatives of w up to order 2n - 1). In particular, if 
the parameter CY vanishes, in which case W and w satisfy adjoint equations respectively, 

2 n  1 (ArBr -ArBr)S’(ar) = 0, 
r = l  

a relation connecting the coefficients of the two fields in two distinct free space regions. 

4. The integral equation for W 

Equation (6) forms an integro-differential equation for W, where W alone occurs on the 
right-hand side, but W, OW, . , , , D2n-1  W on the left-hand side. Let wl ,  w2, . . . , wzn 
denote 2n independent solutions of 9hA’w = 0. In the free space region containing 
z = a ,  let 

while in the free space region containing z = b, let 
2 n  

ws = 1 8:) e-a,z , 
r = l  

with 2(2n j2 coefficients totally. Then ( 6 )  yields 2n equations 

P,(W, w&= -CY /az w 9 i p ’ w ,  dt ,  s = 1 , 2  , . . . ,  2n, 
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or, from (3), 

W [ - D 2 n - 1 ~ s + D 2 n - 2 ( p 2 n - 1 ~ s ) - .  . .+plw,]+. . .+D2”-’W * ( - D w , + P ~ ~ - ~ w ~ )  
2 n  

+DZn-l W * w S  - Ar13j“’S‘(ar) + a W 9 j A ’ ~ ,  dt = 0.  
r = l  IUZ 

These equations enable us to obtain an integral equation involving W only without 
its derivatives, namely, 

N =  

2n 

w2 - 1 ArBj2’S’(ar) + a 
r = l  

D 2 n - 1  p I - 2  
w1 ~1 . . .  Dwl ~1 

DZn-l w2 DZn-’w2 . . .  Dw2 w2 
a . .  

2 n  

r = l  

2n 

DZn-’w1 D 2 n - 3 ~ 1  . . . Dwl w1 - 1 ArBI”S‘(ar)+a Iu2 W9iA’wl d t  

DZn-’w2 D 2 n - 3 ~ 2  . . . Dw2 w2 - 1 ArB~2)S1(ar)+a 
r = l  

and N is the Wronksian 

upon simplification in each case. 
We have the identity 

W , ~ ~ U  - u9LA’w, E D[P,(u, w ~ ) ] .  

Let U denote a solution of g q u  = 0, while we have already chosen w, to denote 
independent solutions of 9.jP’w = 0. Hence we have the 2n equations 

2n 

P q b ,  ws) = cs 
for U ,  Du, , . . , DZnp1u. The choice of 2n independent columns C, will give 2n solutions 
us. In particular, if successively all the C, are zero except one chosen to equal unity, 
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then we define a special set of solutions ul,  u2, . . . , uZn, each being the ratio of two 
determinants, the denominator being N and the numerators the cofactors respectively 
of the last column of M. 

Thus we may write the integral equation of the second kind as 

2 n  2 n  

W =  us( 1 A,BI“’S’(a,)-a laz W9LA’w, dt)  . 
s = l  r = l  

In other words, W is now expressed in terms of the us (the 2n special solutions of the 
adjoint of the equation that we have called the carrier equation), which in turn are 
expressed in terms of the w,, these latter solutions appearing in the integrands. 

For any particular value of s, from (7) we may write 

implying that, of the 2n integrals occurring in the integral equation, some may be taken 
from a to z ,  and others from z to b. At the moment, the selection of’the limits is 
arbitrary, though certain demands to be made later will fix the choice. 

5. The choice of the carrier waves w s  

Successive substitution in (8) will yield a formal development of W in terms of a,  and 
the subsequent substitution of this into ( 7 )  will finally yield a development of the 
left-hand side in terms of a without the necessity of solving equation (1) for W. The 
coefficient of a m  in W involves many multiple integrals of order m, and so does the 
development of ( 7 )  for X((ArBr -ArB,)S’(ar) for a particular choice w = w,. The 
intention is to simplify this complicated summation involving the coefficients, so that 
only one coefficient appearing in W remains to be calculated. Solutions 
wl, w2, . . . , wln are also specially selected so that most terms A,B,, A& in (8) or (9) 
vanish; integrals either from a to z or from z to b are taken so as to achieve this. 

In particular, if n = 1, and if the second-order equation is in normal form, the 
integral equation simplifies, since u1= -wz/N, u2 = w l / N ,  where N = constant. The 
theory then reverts to the case already studied by Heading (1981). 

The selection of the coefficients in W and ws at z = a and z = b can be more easily 
grasped by considering the simple cases when n = 1, 2 ,  3 as in the tables below. The 
procedure underlying these simple cases can then be applied to the general case. For 
any wave, it is arbitrary which n exponential solutions in free space are regarded as 
‘upgoing’ and which n as ‘downgoing’ except that the descriptions for W are reversed 
for all the ws (since the signs in the exponential indices are all reversed). For any w s  for 
general n, there are 4 n  coefficients in total. Of these, 2n - 1 can be chosen to vanish, 
and one can equal unity; the particular solution is then defined uniquely. When 
necessary for our purpose, this special unit coefficient will be attached to an ‘incident’ 
wave, either ‘upgoing’ at z = a, or ‘downgoing’ at z = b. The remaining coefficients will 
be either reflection or transmission coefficients, and the various symbols R, T, r, t 
(incidence from below) and r ’ ,  t’ (incidence from above) are used when necessary; 
otherwise the A’s and E’s  are used as previously. Throughout, we choose w 1  to appear 
in (7). 
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n = l :  

W ' 1  'R ' T  ' 0  Integral in (8) or (9) 

w1 ' r  ' I  1 0  ' t  z to b 
wz t' 0 1 r' a to z 

n = 2 :  

w '1  'RI T O  1 R2 ' T ,  ' 0  ' T 2  ' 0  Integral 

W ' 1 'R, ' 0  'Rz ' 0  'R3 ' T I  '0 ' T2 ' 0  ' T3 ' 0  Integral 

For W (below), the 2n coefficients A, are chosen as follows. One incident wave has 
unit amplitude, the other n -1 incident coefficients being zero. The n reflection 
coefficients RI,. . , , R, are attached to the n downgoing waves. For W (above), the n 
downgoing waves are given zero coefficients, while there are n transmission coefficients 
T I ,  , . . , T,. Overall, 2 n  - 1 coefficients must be zero, while one must be unity. The 
whole arrangement defines a unique solution. 

The 2n solutions ws are chosen so as to be independent. Each has 2n - 1 zero 
coefficients, with 2n + 1 incident, reflected and transmitted waves. The choice is made 
so that for each w, (except s = n + 1) one of 

is zero. If the former, then the integral J'," is used in (8), while if the latter, then J: is used 
as in (9). 

w1 (below) has a unit incident wave, the first reflection coefficient r, n - 1 further 
reflection coefficients, with zero coefficients for the remaining n - 1 incident waves. 
Above, there are n zero downgoing waves, and n transmission coefficients. Hence J', is 
used. w 2 , .  , . , w, (below) each have 2n non-zero coefficients. Above, each has only 
one non-zero coefficient (corresponding respectively to the zeros in W, the last one 
being discounted). Hence I, is used. w , + ~  (below) had t' only in the first column; above, 
all the 2n coefficients occur, and J': is used, though XA,Bt"fl'S'(cyr) (below) is not zero, 
the only case thus chosen. Finally, w , + ~ ,  . . . , w2,, each have only one non-zero 

b 

b 
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coefficient below, corresponding to the n - 1 zeros in W. Above, all the 2n coefficients 
are non-zero, and st is used. 

Slight alterations .in this distribution may be allowed, but apart from these, the 
general pattern is unique so as to achieve our objective. Certainly the simple case given 
by n = 1 is thereby generalised. 

With this choice, integral equation (8) becomes 

while result (7) 

reduces to 

These are complete generalisations of the simpler formulae given when n = 1 by  
Heading (1981). 

The development of (10) as a series in a commences with 

w = t’S’(al)un+l, 

giving 

expressing R I  to O ( a ) ,  valid when a is small, namely when operator (1) possesses 
coefficients differing only slightly from those in gq. 

6. The number of equal multiple integrals 

The consideration of the various multiple integrals produced by successive substitution 
now becomes rather involved. As we illustrate the procedure for dealing with the 
equations and results for general values of n, it should be pointed out that the simpler 
case n = 2 contains all the necessary ingredients to distinguish the general case from the 
specially simple case when n = 1 in normal form. 

As in Heading (1981), the investigation is carried out by means of the reversal of the 
order of integration in the multiple integral of general order: 

j a b f b ) d z / : g b ) d y l b . .  . JbhiW)dw/:i(u)du 

b b b 

= Ja i ( z )  dz h(y) dy J ’. . . I” g(w) dw f ( u )  du, 

where 
(i) the functions in the integrands are reversed in order; 
(ii) the integrals are reversed in order (not counting the first integral), with the lower 

limit a being replaced by the upper limit 6, and vice versa; 
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(iii) any permutation of these limits is permissible. To avoid the unnecessary 
writing down of the variables of integration, no confusion can arise if we write this 
identity as 

This applies for any permutation of limits a (lower) and b (upper). 
Define the operator 

h 

u s {  @‘:”ws, l < s < n  

-us I, C B ~ A ) ~ ~ ,  n -+ 1 < s 2n, 
Bs= 

the variable of integration and the variable limit being given by the context of any 
equation. Then the equation (10) for W is 

2 n  

s = l  
w = t ’ S ’ ( a l ) u n + l  + a  1 B,W. 

The development of W by successive substitution yields 

t’S’(a1) C gsun+l 

as the coefficient of a, and 

as the coefficient of am,  Hence the coefficient of am+’ in R1 is 

The question of the convergence of the series for RI is an issue that is independent of the 
investigation of relationships between integrals produced by the formal development. 

permutations involved in (E Bs)m, yielding n m  multiple integrals. 
In the consideration of any particular multiple integral, often only a modified integral 
containing a selection of terms from the integrand may have to be examined, since 
9bA)wl ,  u , + ~ ,  and so on, all contain many terms. Our investigation must show how 
many of these integrals (with modified integrands if necessary) are equal in pairs- 
yielding dual or reciprocal pairs-and how many in themselves form self -dual integrals. 

When n = 1,  the author’s previous investigation (Heading 1981) was more direct, 
since 9bA’ws consisted of one term only, involving ws, while us also consisted of one 
term only (involving either w1 or WZ). 

In the general case, for brevity denote CB~*’wS by as, a linear expression in ws and its 
derivatives up to order 2n - 1. A modified integrand will only require the use of the one 
term not involving a derivative: we shall denote this by 

There will be n 

modified Gs = a: = Yw,. 
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We have defined us as 

us = 

When expanded, this consists of 2n - 1 terms as w,(s, r )  s # r, the expansion taking place 
down the last column, where (s, r )  = ( r ,  s) denotes the determinant of order 2 n  - 2 ,  

(with rows s and r omitted) divided by N. 

respectively, in modified integrals. Then 
It will transpire that only s = 1 and n + 1 will be needed, with r = n + 1 and 1 

modified U I =  U'; = (-l)nwn+l(l ,  n + l), 

modified u , + ~  = U O , + ~  = (-l)"+'wl(n + 1, l), 

with identical coefficients (1, n + 1) ( ~ 2 ,  say) appearing in both modifications. 
We now consider any multiple integral of order m 

Jab m i ( g s g t  * - )Un+l*  

The order of integration is reversed in keeping with result (13), and the result is 
compared with another permutation to see if equality is possible, the G's  and the U ' S  

being modified if necessary in the process. A careful and detailed examination of this 
process reveals that G I  at the beginning and u,+~ at the end place a restriction on what is 
possible: permutations containing only PI and P,,+l are allowed. This means that all 
permutations are allowed in the simplest case when n = 1. 

An example will now show what is involved, Take the multiple integral of order 
eight that would arise in the coefficient of a' in R I :  

where the suffix N denotes n + 1 for brevity. Explicitly, this is 

b b b b 

Jab f i l u l  m l u l  G l U N  la G N U 1  J' @ l U N  la @ N U 1  * l u N *  

This is equal to the reversed integral 

This is not a permissible permutation; in fact, it is not a permutation of the defined 
operators at all. A direct equality is not possible in this case. But if certain of the a's 
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and U ' S  are modified in keeping with the above definitions, we have 
b b b b la @luNla  @Nu1 [ @h&I @ 1 U N l a  @NU1 [ *lUNja P?u?  la @?U? 

Where necessary this is altered slightly so that the individual symbols are appropriately 
in juxtaposition to the integral signs: 

b b b Ia * N U 1  yw1(-1)"w1z[  @ l u N  

It can now be seen that this is the modified form of another permutation (the limits of 
integration dictating what symbols must be written down), namely 

b b b b -la @ I U N I a  @Nul [ @';U?  [ @ l U N j a  @ N U 1  I @luN\a @&u&ja @&U& ( 1 8 )  

It can now be seen what modifications are necessary in (14)  and (19 )  when expressed 
as (17) and (18).  If two identical suffixes occur between two integral signs (for example, 
@ I U I ,  @ I U I ,  @NUN in (15 ) ,  and the same in (18 ) ) ,  all such symbols must be modified. To 
enable us to denote this easily, let 

P: =( * )us  \ a:, "9, = ( + ) U ;  j @,, 

T lab 

"9; (*)U: a:;  

then the equality just deduced may be .expressed in the form 

@'; '9; o g l g N p l g & o g N g l u N  = - @1gNgY " ~ 1 g N ~ 1 g & " g ' f ; U & ,  

the sign being (-l)L, where 2L = total number of modified @'s and U ' S  in either integral. 
Although for ease of explanation this result has been proved for a particular 

permutation, it is valid for any permutation. 
Some permutations may be self-dual, and need no modification. For example, 

jab @ i g N g i g N p i u N  

yields itself upon reversal. Other self-dual permutations require modification, as 
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the modified integral, equal to itself upon reversal, is 

lab 61pNp; 'p1p>'~)Np1UN, 

There are no self-dual integrals (modified when necessary) of even order. 
Some permutations may need only two modifications, such as 

lah @1pNp1pNp1pkuh= - @; 'p1pNp1p)Np1U)Na 
l a b  

l a h  lah 
There cannot be a permutation that requires modification of every symbol, though 
permutations will exist that require modification of all but two symbols: 

@: '9: 'p; ' P l U N  = - @1gk0p&'p>u&. 

Since only two suffixes, 1 and N, enter these pairs, the number of dual pairs and 
self-dual integrals (modified when necessary) for each value of n will be the same as in 
the case n = 1 (in which case no modification is needed when an integrating factor 
effectively reduces the two equations to normal form). These numbers have been 
tabulated in Heading (1981). Consequently the generalisation consists, not in the 
number of such integrals, but in the analytical forms of W and R1 (and the special choice 
of the w's and U ' S ) ,  and in the modifications to the integrands necessary to achieve 
identity (perhaps with a minus sign). In the diagram, the results when n = 2 are 
illustrated in the same way as adopted for the case when n = 1, except that a lot of 
redundant integrals are produced that do not participate in the theorem (represented by 
short lines that do not lead to further branches). 

The diagram shows that the equality relating to the coefficient a m  contains the sign 
(-l)m. This may be proved generally. 

Writing down only the suffixes contained in such an integral, we may have 

1 a b c . . .  f 3, 

where there are m suffixes a ,  b, c, , , , , f, denoting either 1 or 3. Iff = 1, let N equal the 
number of times that two equal suffixes stand side by side. When m is increased to 
m + 1, two possibilities arise: 

1 a b c . . .  1 " 1  3 

1 a b c . . .  1 3 "3.  

In both cases, an extra pair is created, denoted by *, so that the number of pairs is now 
N + 1. But i f f  = 3, let M denote the number of such pairs in 

1 a b c . . .  3 3. 

Increasing m to m + 1, we have two possibilities 

1 a b c . . .  3 * 1  " 3  

1 a b c . . .  3 * 3  "3 .  

In the first one, a pair is broken at **, while in the second one two pairs arise from one 
pair at **. The number of such pairs is therefore M - 1 or M + 1 respectively. 
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Figure 1. A branch to the left represents the operator PI, while one to the right represents 
P3. Equal numbers in a horizontal band denote equality (with a f sign as appropriate). The 
subscripts denote the number of modifications necessary in the integrands. The band 
O(a")  refers to W, and O(am+l )  to RI. The equal integrals are: 

When m = 1, there are only two cases: 1 1 3 and 1 3 3, where N = 1 and M = 1. It 
follows that for general m the number of such pairs is even or odd when m is even or odd 
respectively. The signs relating to the coefficient a m  are therefore always (-l)m. 

Finally, if we define 9 3  = - 9 3 ,  we note that the number of P3 's  occurring in an 
equality in the coefficient of a m  equals m. Replacing P3 by 93, we see immediately that 
all signs in the equalities become positive throughout. 
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